The Nature of Statistical Learning Theory

Filename: the-nature-of-statistical-learning-theory.pdf
ISBN: 9781475724400
Release Date: 2013-04-17
Number of pages: 188
Author: Vladimir N. Vapnik
Publisher: Springer Science & Business Media

Download and read online The Nature of Statistical Learning Theory in PDF and EPUB The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning from the general point of view of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. These include: - the general setting of learning problems and the general model of minimizing the risk functional from empirical data - a comprehensive analysis of the empirical risk minimization principle and shows how this allows for the construction of necessary and sufficient conditions for consistency - non-asymptotic bounds for the risk achieved using the empirical risk minimization principle - principles for controlling the generalization ability of learning machines using small sample sizes - introducing a new type of universal learning machine that controls the generalization ability.


The Nature of Statistical Learning Theory

Filename: the-nature-of-statistical-learning-theory.pdf
ISBN: 0387987800
Release Date: 1999-11-19
Number of pages: 314
Author: Vladimir Vapnik
Publisher: Springer Science & Business Media

Download and read online The Nature of Statistical Learning Theory in PDF and EPUB The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. This second edition contains three new chapters devoted to further development of the learning theory and SVM techniques. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists.


An Elementary Introduction to Statistical Learning Theory

Filename: an-elementary-introduction-to-statistical-learning-theory.pdf
ISBN: 1118023463
Release Date: 2011-06-09
Number of pages: 288
Author: Sanjeev Kulkarni
Publisher: John Wiley & Sons

Download and read online An Elementary Introduction to Statistical Learning Theory in PDF and EPUB A thought-provoking look at statistical learning theory and its role in understanding human learning and inductive reasoning A joint endeavor from leading researchers in the fields of philosophy and electrical engineering, An Elementary Introduction to Statistical Learning Theory is a comprehensive and accessible primer on the rapidly evolving fields of statistical pattern recognition and statistical learning theory. Explaining these areas at a level and in a way that is not often found in other books on the topic, the authors present the basic theory behind contemporary machine learning and uniquely utilize its foundations as a framework for philosophical thinking about inductive inference. Promoting the fundamental goal of statistical learning, knowing what is achievable and what is not, this book demonstrates the value of a systematic methodology when used along with the needed techniques for evaluating the performance of a learning system. First, an introduction to machine learning is presented that includes brief discussions of applications such as image recognition, speech recognition, medical diagnostics, and statistical arbitrage. To enhance accessibility, two chapters on relevant aspects of probability theory are provided. Subsequent chapters feature coverage of topics such as the pattern recognition problem, optimal Bayes decision rule, the nearest neighbor rule, kernel rules, neural networks, support vector machines, and boosting. Appendices throughout the book explore the relationship between the discussed material and related topics from mathematics, philosophy, psychology, and statistics, drawing insightful connections between problems in these areas and statistical learning theory. All chapters conclude with a summary section, a set of practice questions, and a reference sections that supplies historical notes and additional resources for further study. An Elementary Introduction to Statistical Learning Theory is an excellent book for courses on statistical learning theory, pattern recognition, and machine learning at the upper-undergraduate and graduate levels. It also serves as an introductory reference for researchers and practitioners in the fields of engineering, computer science, philosophy, and cognitive science that would like to further their knowledge of the topic.


Statistical learning theory

Filename: statistical-learning-theory.pdf
ISBN: UOM:39076002704257
Release Date: 1998-09-30
Number of pages: 736
Author: Vladimir Naumovich Vapnik
Publisher: Wiley-Interscience

Download and read online Statistical learning theory in PDF and EPUB A comprehensive look at learning and generalization theory. The statistical theory of learning and generalization concerns the problem of choosing desired functions on the basis of empirical data. Highly applicable to a variety of computer science and robotics fields, this book offers lucid coverage of the theory as a whole. Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.


Statistical Learning Theory and Stochastic Optimization

Filename: statistical-learning-theory-and-stochastic-optimization.pdf
ISBN: 9783540445074
Release Date: 2004-08-30
Number of pages: 284
Author: Olivier Catoni
Publisher: Springer

Download and read online Statistical Learning Theory and Stochastic Optimization in PDF and EPUB Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it may be a good idea, to use as is often done in practice a notoriously "wrong'' (i.e. over-simplified) model to predict, estimate or classify. This point of view takes its roots in three fields: information theory, statistical mechanics, and PAC-Bayesian theorems. Results on the large deviations of trajectories of Markov chains with rare transitions are also included. They are meant to provide a better understanding of stochastic optimization algorithms of common use in computing estimators. The author focuses on non-asymptotic bounds of the statistical risk, allowing one to choose adaptively between rich and structured families of models and corresponding estimators. Two mathematical objects pervade the book: entropy and Gibbs measures. The goal is to show how to turn them into versatile and efficient technical tools, that will stimulate further studies and results.


Empirical Inference

Filename: empirical-inference.pdf
ISBN: 9783642411366
Release Date: 2013-12-11
Number of pages: 287
Author: Bernhard Schoelkopf
Publisher: Springer Science & Business Media

Download and read online Empirical Inference in PDF and EPUB This book honours the outstanding contributions of Vladimir Vapnik, a rare example of a scientist for whom the following statements hold true simultaneously: his work led to the inception of a new field of research, the theory of statistical learning and empirical inference; he has lived to see the field blossom; and he is still as active as ever. He started analyzing learning algorithms in the 1960s and he invented the first version of the generalized portrait algorithm. He later developed one of the most successful methods in machine learning, the support vector machine (SVM) – more than just an algorithm, this was a new approach to learning problems, pioneering the use of functional analysis and convex optimization in machine learning. Part I of this book contains three chapters describing and witnessing some of Vladimir Vapnik's contributions to science. In the first chapter, Léon Bottou discusses the seminal paper published in 1968 by Vapnik and Chervonenkis that lay the foundations of statistical learning theory, and the second chapter is an English-language translation of that original paper. In the third chapter, Alexey Chervonenkis presents a first-hand account of the early history of SVMs and valuable insights into the first steps in the development of the SVM in the framework of the generalised portrait method. The remaining chapters, by leading scientists in domains such as statistics, theoretical computer science, and mathematics, address substantial topics in the theory and practice of statistical learning theory, including SVMs and other kernel-based methods, boosting, PAC-Bayesian theory, online and transductive learning, loss functions, learnable function classes, notions of complexity for function classes, multitask learning, and hypothesis selection. These contributions include historical and context notes, short surveys, and comments on future research directions. This book will be of interest to researchers, engineers, and graduate students engaged with all aspects of statistical learning.


Information Theory and Statistical Learning

Filename: information-theory-and-statistical-learning.pdf
ISBN: 9780387848167
Release Date: 2008-11-24
Number of pages: 439
Author: Frank Emmert-Streib
Publisher: Springer Science & Business Media

Download and read online Information Theory and Statistical Learning in PDF and EPUB "Information Theory and Statistical Learning" presents theoretical and practical results about information theoretic methods used in the context of statistical learning. The book will present a comprehensive overview of the large range of different methods that have been developed in a multitude of contexts. Each chapter is written by an expert in the field. The book is intended for an interdisciplinary readership working in machine learning, applied statistics, artificial intelligence, biostatistics, computational biology, bioinformatics, web mining or related disciplines. Advance Praise for "Information Theory and Statistical Learning": "A new epoch has arrived for information sciences to integrate various disciplines such as information theory, machine learning, statistical inference, data mining, model selection etc. I am enthusiastic about recommending the present book to researchers and students, because it summarizes most of these new emerging subjects and methods, which are otherwise scattered in many places." Shun-ichi Amari, RIKEN Brain Science Institute, Professor-Emeritus at the University of Tokyo


Computer Age Statistical Inference

Filename: computer-age-statistical-inference.pdf
ISBN: 9781108107952
Release Date: 2016-07-21
Number of pages:
Author: Bradley Efron
Publisher: Cambridge University Press

Download and read online Computer Age Statistical Inference in PDF and EPUB The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.


Statistical Learning with Sparsity

Filename: statistical-learning-with-sparsity.pdf
ISBN: 9781498712170
Release Date: 2015-05-07
Number of pages: 367
Author: Trevor Hastie
Publisher: CRC Press

Download and read online Statistical Learning with Sparsity in PDF and EPUB Discover New Methods for Dealing with High-Dimensional Data A sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data. Top experts in this rapidly evolving field, the authors describe the lasso for linear regression and a simple coordinate descent algorithm for its computation. They discuss the application of l1 penalties to generalized linear models and support vector machines, cover generalized penalties such as the elastic net and group lasso, and review numerical methods for optimization. They also present statistical inference methods for fitted (lasso) models, including the bootstrap, Bayesian methods, and recently developed approaches. In addition, the book examines matrix decomposition, sparse multivariate analysis, graphical models, and compressed sensing. It concludes with a survey of theoretical results for the lasso. In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. Data analysts, computer scientists, and theorists will appreciate this thorough and up-to-date treatment of sparse statistical modeling.


An Introduction to Statistical Learning

Filename: an-introduction-to-statistical-learning.pdf
ISBN: 9781461471387
Release Date: 2013-06-24
Number of pages: 426
Author: Gareth James
Publisher: Springer Science & Business Media

Download and read online An Introduction to Statistical Learning in PDF and EPUB An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.


Statistical Learning from a Regression Perspective

Filename: statistical-learning-from-a-regression-perspective.pdf
ISBN: 9783319440484
Release Date: 2016-10-26
Number of pages: 347
Author: Richard A. Berk
Publisher: Springer

Download and read online Statistical Learning from a Regression Perspective in PDF and EPUB This textbook considers statistical learning applications when interest centers on the conditional distribution of the response variable, given a set of predictors, and when it is important to characterize how the predictors are related to the response. As a first approximation, this can be seen as an extension of nonparametric regression. This fully revised new edition includes important developments over the past 8 years. Consistent with modern data analytics, it emphasizes that a proper statistical learning data analysis derives from sound data collection, intelligent data management, appropriate statistical procedures, and an accessible interpretation of results. A continued emphasis on the implications for practice runs through the text. Among the statistical learning procedures examined are bagging, random forests, boosting, support vector machines and neural networks. Response variables may be quantitative or categorical. As in the first edition, a unifying theme is supervised learning that can be treated as a form of regression analysis. Key concepts and procedures are illustrated with real applications, especially those with practical implications. A principal instance is the need to explicitly take into account asymmetric costs in the fitting process. For example, in some situations false positives may be far less costly than false negatives. Also provided is helpful craft lore such as not automatically ceding data analysis decisions to a fitting algorithm. In many settings, subject-matter knowledge should trump formal fitting criteria. Yet another important message is to appreciate the limitation of one’s data and not apply statistical learning procedures that require more than the data can provide. The material is written for upper undergraduate level and graduate students in the social and life sciences and for researchers who want to apply statistical learning procedures to scientific and policy problems. The author uses this book in a course on modern regression for the social, behavioral, and biological sciences. Intuitive explanations and visual representations are prominent. All of the analyses included are done in R with code routinely provided.


The Practice of Time Series Analysis

Filename: the-practice-of-time-series-analysis.pdf
ISBN: 9781461221623
Release Date: 2012-12-06
Number of pages: 386
Author: Hirotugu Akaike
Publisher: Springer Science & Business Media

Download and read online The Practice of Time Series Analysis in PDF and EPUB A collection of applied papers on time series, appearing here for the first time in English. The applications are primarily found in engineering and the physical sciences.


Information Theory Inference and Learning Algorithms

Filename: information-theory-inference-and-learning-algorithms.pdf
ISBN: 0521642981
Release Date: 2003-09-25
Number of pages: 628
Author: David J. C. MacKay
Publisher: Cambridge University Press

Download and read online Information Theory Inference and Learning Algorithms in PDF and EPUB Fun and exciting textbook on the mathematics underpinning the most dynamic areas of modern science and engineering.


Principles and Theory for Data Mining and Machine Learning

Filename: principles-and-theory-for-data-mining-and-machine-learning.pdf
ISBN: 9780387981352
Release Date: 2009-07-21
Number of pages: 786
Author: Bertrand Clarke
Publisher: Springer Science & Business Media

Download and read online Principles and Theory for Data Mining and Machine Learning in PDF and EPUB Extensive treatment of the most up-to-date topics Provides the theory and concepts behind popular and emerging methods Range of topics drawn from Statistics, Computer Science, and Electrical Engineering


Advances in Ubiquitous Networking

Filename: advances-in-ubiquitous-networking.pdf
ISBN: 9789812879905
Release Date: 2016-02-02
Number of pages: 572
Author: Essaïd Sabir
Publisher: Springer

Download and read online Advances in Ubiquitous Networking in PDF and EPUB This volume publishes new trends and findings in hot topics related to ubiquitous computing/networking. It is the outcome of UNet - ainternational scientific event that took place on September 08-10, 2015, in the fascinating city of Casablanca, Morocco. UNet’15 is technically sponsored by IEEE Morocco Section and IEEE COMSOC Morocco Chapter.