Real Analysis

Filename: real-analysis.pdf
ISBN: 9781400835560
Release Date: 2009-11-28
Number of pages: 424
Author: Elias M. Stein
Publisher: Princeton University Press

Download and read online Real Analysis in PDF and EPUB Real Analysis is the third volume in the Princeton Lectures in Analysis, a series of four textbooks that aim to present, in an integrated manner, the core areas of analysis. Here the focus is on the development of measure and integration theory, differentiation and integration, Hilbert spaces, and Hausdorff measure and fractals. This book reflects the objective of the series as a whole: to make plain the organic unity that exists between the various parts of the subject, and to illustrate the wide applicability of ideas of analysis to other fields of mathematics and science. After setting forth the basic facts of measure theory, Lebesgue integration, and differentiation on Euclidian spaces, the authors move to the elements of Hilbert space, via the L2 theory. They next present basic illustrations of these concepts from Fourier analysis, partial differential equations, and complex analysis. The final part of the book introduces the reader to the fascinating subject of fractional-dimensional sets, including Hausdorff measure, self-replicating sets, space-filling curves, and Besicovitch sets. Each chapter has a series of exercises, from the relatively easy to the more complex, that are tied directly to the text. A substantial number of hints encourage the reader to take on even the more challenging exercises. As with the other volumes in the series, Real Analysis is accessible to students interested in such diverse disciplines as mathematics, physics, engineering, and finance, at both the undergraduate and graduate levels. Also available, the first two volumes in the Princeton Lectures in Analysis:


Fourier Analysis

Filename: fourier-analysis.pdf
ISBN: 9781400831234
Release Date: 2011-02-11
Number of pages: 328
Author: Elias M. Stein
Publisher: Princeton University Press

Download and read online Fourier Analysis in PDF and EPUB This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.


Complex Analysis

Filename: complex-analysis.pdf
ISBN: 9781400831159
Release Date: 2010-04-22
Number of pages: 400
Author: Elias M. Stein
Publisher: Princeton University Press

Download and read online Complex Analysis in PDF and EPUB With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.


Functional Analysis

Filename: functional-analysis.pdf
ISBN: 9780691113876
Release Date: 2011-09-11
Number of pages: 423
Author: Elias M. Stein
Publisher: Princeton University Press

Download and read online Functional Analysis in PDF and EPUB "This book covers such topics as Lp̂ spaces, distributions, Baire category, probability theory and Brownian motion, several complex variables and oscillatory integrals in Fourier analysis. The authors focus on key results in each area, highlighting their importance and the organic unity of the subject"--Provided by publisher.


Real Analysis

Filename: real-analysis.pdf
ISBN: 9781118626399
Release Date: 2013-06-11
Number of pages: 416
Author: Gerald B. Folland
Publisher: John Wiley & Sons

Download and read online Real Analysis in PDF and EPUB An in-depth look at real analysis and its applications-now expanded and revised. This new edition of the widely used analysis book continues to cover real analysis in greater detail and at a more advanced level than most books on the subject. Encompassing several subjects that underlie much of modern analysis, the book focuses on measure and integration theory, point set topology, and the basics of functional analysis. It illustrates the use of the general theories and introduces readers to other branches of analysis such as Fourier analysis, distribution theory, and probability theory. This edition is bolstered in content as well as in scope-extending its usefulness to students outside of pure analysis as well as those interested in dynamical systems. The numerous exercises, extensive bibliography, and review chapter on sets and metric spaces make Real Analysis: Modern Techniques and Their Applications, Second Edition invaluable for students in graduate-level analysis courses. New features include: * Revised material on the n-dimensional Lebesgue integral. * An improved proof of Tychonoff's theorem. * Expanded material on Fourier analysis. * A newly written chapter devoted to distributions and differential equations. * Updated material on Hausdorff dimension and fractal dimension.


An Introduction to Measure Theory

Filename: an-introduction-to-measure-theory.pdf
ISBN: 9780821869192
Release Date: 2011-09-14
Number of pages: 206
Author: Terence Tao
Publisher: American Mathematical Soc.

Download and read online An Introduction to Measure Theory in PDF and EPUB This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Caratheodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.


Measure and Integral

Filename: measure-and-integral.pdf
ISBN: 9781498702904
Release Date: 2015-04-24
Number of pages: 532
Author: Richard L. Wheeden
Publisher: CRC Press

Download and read online Measure and Integral in PDF and EPUB Now considered a classic text on the topic, Measure and Integral: An Introduction to Real Analysis provides an introduction to real analysis by first developing the theory of measure and integration in the simple setting of Euclidean space, and then presenting a more general treatment based on abstract notions characterized by axioms and with less geometric content. Published nearly forty years after the first edition, this long-awaited Second Edition also: Studies the Fourier transform of functions in the spaces L1, L2, and Lp, 1 p Shows the Hilbert transform to be a bounded operator on L2, as an application of the L2 theory of the Fourier transform in the one-dimensional case Covers fractional integration and some topics related to mean oscillation properties of functions, such as the classes of Hölder continuous functions and the space of functions of bounded mean oscillation Derives a subrepresentation formula, which in higher dimensions plays a role roughly similar to the one played by the fundamental theorem of calculus in one dimension Extends the subrepresentation formula derived for smooth functions to functions with a weak gradient Applies the norm estimates derived for fractional integral operators to obtain local and global first-order Poincaré–Sobolev inequalities, including endpoint cases Proves the existence of a tangent plane to the graph of a Lipschitz function of several variables Includes many new exercises not present in the first edition This widely used and highly respected text for upper-division undergraduate and first-year graduate students of mathematics, statistics, probability, or engineering is revised for a new generation of students and instructors. The book also serves as a handy reference for professional mathematicians.


Lebesgue Integration on Euclidean Space

Filename: lebesgue-integration-on-euclidean-space.pdf
ISBN: 0763717088
Release Date: 2001
Number of pages: 588
Author: Frank Jones
Publisher: Jones & Bartlett Learning

Download and read online Lebesgue Integration on Euclidean Space in PDF and EPUB Lebesgue Integration on Euclidean Space contains a concrete, intuitive, and patient derivation of Lebesgue measure and integration on Rn. Throughout the text, many exercises are incorporated, enabling students to apply new ideas immediately. Jones strives to present a slow introduction to Lebesgue integration by dealing with n-dimensional spaces from the outset. In addition, the text provides students a thorough treatment of Fourier analysis, while holistically preparing students to become workers in real analysis.


Functional Analysis Sobolev Spaces and Partial Differential Equations

Filename: functional-analysis-sobolev-spaces-and-partial-differential-equations.pdf
ISBN: 9780387709147
Release Date: 2010-11-02
Number of pages: 600
Author: Haim Brezis
Publisher: Springer Science & Business Media

Download and read online Functional Analysis Sobolev Spaces and Partial Differential Equations in PDF and EPUB This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.


Probability and Stochastics

Filename: probability-and-stochastics.pdf
ISBN: 0387878599
Release Date: 2011-02-21
Number of pages: 558
Author: Erhan Çınlar
Publisher: Springer Science & Business Media

Download and read online Probability and Stochastics in PDF and EPUB This text is an introduction to the modern theory and applications of probability and stochastics. The style and coverage is geared towards the theory of stochastic processes, but with some attention to the applications. In many instances the gist of the problem is introduced in practical, everyday language and then is made precise in mathematical form. The first four chapters are on probability theory: measure and integration, probability spaces, conditional expectations, and the classical limit theorems. There follows chapters on martingales, Poisson random measures, Levy Processes, Brownian motion, and Markov Processes. Special attention is paid to Poisson random measures and their roles in regulating the excursions of Brownian motion and the jumps of Levy and Markov processes. Each chapter has a large number of varied examples and exercises. The book is based on the author’s lecture notes in courses offered over the years at Princeton University. These courses attracted graduate students from engineering, economics, physics, computer sciences, and mathematics. Erhan Cinlar has received many awards for excellence in teaching, including the President’s Award for Distinguished Teaching at Princeton University. His research interests include theories of Markov processes, point processes, stochastic calculus, and stochastic flows. The book is full of insights and observations that only a lifetime researcher in probability can have, all told in a lucid yet precise style.


Foundations of Modern Analysis

Filename: foundations-of-modern-analysis.pdf
ISBN: 0486640620
Release Date: 1970
Number of pages: 250
Author: Avner Friedman
Publisher: Courier Corporation

Download and read online Foundations of Modern Analysis in PDF and EPUB Measure and integration, metric spaces, the elements of functional analysis in Banach spaces, and spectral theory in Hilbert spaces — all in a single study. Only book of its kind. Unusual topics, detailed analyses. Problems. Excellent for first-year graduate students, almost any course on modern analysis. Preface. Bibliography. Index.


Analysis Now

Filename: analysis-now.pdf
ISBN: 9781461210078
Release Date: 2012-12-06
Number of pages: 280
Author: Gert K. Pedersen
Publisher: Springer Science & Business Media

Download and read online Analysis Now in PDF and EPUB Graduate students in mathematics, who want to travel light, will find this book invaluable; impatient young researchers in other fields will enjoy it as an instant reference to the highlights of modern analysis. Starting with general topology, it moves on to normed and seminormed linear spaces. From there it gives an introduction to the general theory of operators on Hilbert space, followed by a detailed exposition of the various forms the spectral theorem may take; from Gelfand theory, via spectral measures, to maximal commutative von Neumann algebras. The book concludes with two supplementary chapters: a concise account of unbounded operators and their spectral theory, and a complete course in measure and integration theory from an advanced point of view.


An Introduction to Complex Analysis in Several Variables

Filename: an-introduction-to-complex-analysis-in-several-variables.pdf
ISBN: 9780444105233
Release Date: 1973-02-12
Number of pages: 213
Author: L. Hormander
Publisher: Elsevier

Download and read online An Introduction to Complex Analysis in Several Variables in PDF and EPUB An Introduction to Complex Analysis in Several Variables


Measures Integrals and Martingales

Filename: measures-integrals-and-martingales.pdf
ISBN: 0521850150
Release Date: 2005-11-10
Number of pages: 381
Author: René L. Schilling
Publisher: Cambridge University Press

Download and read online Measures Integrals and Martingales in PDF and EPUB This book, first published in 2005, introduces measure and integration theory as it is needed in many parts of analysis and probability.


Real Analysis

Filename: real-analysis.pdf
ISBN: 013143747X
Release Date: 2010-01-01
Number of pages: 505
Author: H. L. Royden
Publisher: Pearson College Division

Download and read online Real Analysis in PDF and EPUB Real Analysis, Fourth Edition, covers the basic material that every reader should know in the classical theory of functions of a real variable, measure and integration theory, and some of the more important and elementary topics in general topology and normed linear space theory. This text assumes a general background in mathematics and familiarity with the fundamental concepts of analysis. Classical theory of functions, including the classical Banach spaces; General topology and the theory of general Banach spaces; Abstract treatment of measure and integration. For all readers interested in real analysis.